Call for Posters and Demonstrations

The 8th IEEE/ACM International Conference on Grid Computing (Grid2007) invites researchers to submit posters and/or demonstrations. The poster and demonstration session offer an excellent opportunity for researchers to present new, speculative or evolving ideas which may not be ready for full publication. It will also be an excellent venue for late-breaking results in on-going research programs. The forum provides an informal and interactive setting where researchers can connect, create collaboration and stimulate alternative research questions. Student submissions are particularly welcomed.

Work-in-progress, hot ideas, and prototype demonstrations are welcome in any of the topics of interest listed in the Call for Papers for Grid2007.

Submission

Please submit a 1 page proposal which clearly describe your research motivation, contribution, and the results you wish to present in your poster or demonstration. Please clearly mark the proposal as either a poster or demonstration submission. All posters and demonstration proposals will be peer-reviewed. Poster proposals should be submitted to grid2007-posters@tacc.utexas.edu and demonstration proposals should be submitted to grid2007-demo@tacc.utexas.edu.

Important Dates

Poster/Demonstration Proposals by:
June 29, 2007
POSTER: Performance of a Multi-Paradigm Messaging Runtime on Multicore Systems
Xiaohong Qiu Geoffrey Fox, Seung-Hee Bae George Chrysanthakopoulos, Henrik F. Nielsen
Research Computing UITS Community Grids Laboratory Microsoft Research
Indiana University Bloomington Indiana University Bloomington Redmond WA

Broad deployment of multicore systems in commodity situations has highlighted the need for parallel environments that support a wider range of application than those on traditional parallel supercomputers. In particular it seems likely that one will build composite applications with components running in parallel on individual or clustered multicore. Further, each component could need distinct run-times to support different parallel execution models. These include MPI-style loosely synchronous executive, dynamic threading, and discrete event simulation. These microscopic parallel paradigms would be composed by an overarching coarse grain functional parallelism. In the language of Berkeley’s position paper [1], we need to support the parallelism of applications matching the style of individual kernels or dwarves and their composition into complete applications. We are researching a runtime that will support such heterogeneous applications with good performance for each paradigm and their integration [2]. Here we report on an evaluation of Concurrency and Coordination Runtime (or CCR [3]) from Microsoft as such a multi-paradigm runtime. CCR supports a distributed, state-oriented service framework known as DSS (or Decentralized System Services [4]). With DSS sits on top of CCR, it allows us to compose composite applications using Grid/Web service workflow or Web 2.0 mashups which we will illustrate in a separate demonstration proposal.

In this poster, we present key performance measurements for MPI style messaging, dynamic threading, and DSS-based service interactions. We give results on message latency and bandwidth for two processor multicore systems based on AMD and Intel architectures with a total of four and eight cores. Generating up to a million messages per second on a single PC, we find on the AMD-based PC, latencies from 4µs in basic asynchronous threading to 14 µs for a full MPI_SENDRECV exchange with all threads (one per core) sending and receiving 2 messages at a traditional MPI loosely synchronous rendezvous. Workflow latencies are measured as less than 40 µs. All results come from the CCR and DSS freely available as part of the Microsoft Robotics Studio [5] distribution. We present Intel PC latencies that are somewhat higher but whose optimization has not been studied yet by us. We compare our C# results with Java using the new MPJ Express [6] implementation of MPI.
Looking to the future, we suggest that the ease of programming custom collectives using the CCR primitives make it attractive to consider building a full MPI runtime on top of it. This would have fully asynchronous queued messaging, integration with workflow and thread-based programming, a rendezvous and active message mode, support of managed code (C#), and ability to run on cluster and multicore systems. Current CCR has achieved reasonable performance for MPI primitives. Core CCR plans to improve this and lead to a factor of 2 lower latencies.
Reference

[1] Krste Asanovic et al. The Landscape of Parallel Computing Research: A View from Berkeley Technical report December 18 2006. http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
[2] Xiaohong Qiu, Geoffrey Fox, George Chrysanthakopoulos, Henrik Frystyk Nielsen High Performance Multi-Paradigm Messaging Runtime on Multicore Systems Technical Report April 16 2007 http://grids.ucs.indiana.edu/ptliupages/publications/CCRApril16open.pdf

[3] Concurrency and Coordination Runtime (CCR) http://channel9.msdn.com/wiki/default.aspx/Channel9.ConcurrencyRuntime
[4] Decentralized Software Services (DSS) http://msdn.microsoft.com/robotics/media/DSSP.pdf
[5] Microsoft Robotics Studio. http://msdn.microsoft.com/robotics/
[6] MPJ Express. http://acet.rdg.ac.uk/projects/mpj/.
DEMONSTRATION: Integration of Multicore Grid and Web 2.0 Technologies for Commodity Parallel Computing
Xiaohong Qiu

Research Computing UITS

Indiana University Bloomington
Geoffrey Fox, Milan Jovovic, Marlon Pierce, Huapeng Yuan

Community Grids Laboratory
Indiana University Bloomington
George Chrysanthakopoulos, Henrik Frystyk Nielsen

Microsoft Research

Redmond WA

The demonstration will show a Web 2.0 mash-up (that is, a rich Web interface combining clients to multiple remote services) implementing a simple scientific data analysis workflow (chemical parameter space data clustering) with the analysis services running in parallel on multicore processors. We also show the same system implemented using a Grid workflow using Taverna, demonstrating the functional equivalence of the two approaches and the suitability of Web 2.0 as a productivity layer for scientific and parallel computing.

We are exploring approaches to parallel computing that will be easier to deploy in commodity applications than the current model that is aimed at expert programmers. This demonstration illustrates the hybrid “expert-me” model where experts produce optimized parallel code and anybody (“me” working in a Web 2.0 development environment that we dub “MyParallelSpace”) can compose these modules together to produce complete applications. These concepts are called the “efficiency” and “productivity” layers in Patterson’s description of the Berkeley approach to parallel computing [1]. We use traditional parallel programming models for the expert but need to support within a single runtime all the important “expert” paradigms including MPI-style, dynamic threading and discrete event/agent simulations. We use Microsoft’s Concurrency and Coordination Runtime (CCR) [2] to support the multi paradigm expert as it gives good performance for these paradigms [3] and it is coupled to a service model DSS (Decentralized Software Services [4]) that is a natural platform for the “me” productivity layer. We expect to see many different productivity layers and illustrate by comparing Web 2.0 mash-up and Grid workflow approaches. Our example is simple at this stage of our research and so does not differentiate between these productivity models. Our demonstration application comes from Cheminformatics [5] and involves data mining (in particular chemical space clustering) information from the NIH resource PubChem related bioinformatics and image processing applications are in development.
We see a major research area to be the efficient handling of data in this model, where we have both message-based interactions and shared memory models with data remaining in place in a multicore chip or transposed with an efficient collective operation. These operations need to be performed efficiently while preserving the simple MyParallelSpace user/developer interface. The broad approach is well known to parallel computing with AVS, SCIRun and Khoros providing examples of coarse grain functional programming of parallel modules. The novelty of this work includes the use of Web 2.0 and Grid workflow for MyParallelSpace and the systematic use of CCR as an efficient multi-expert paradigm runtime.
Reference

[1] David Patterson The Landscape of Parallel Computing Research: A View from Berkeley 2.0 Presentation at Manycore Computing 2007 Seattle June 20 2007 http://science.officeisp.net/ManycoreComputingWorkshop07/Presentations/David%20Patterson.pdf
[2] Concurrency and Coordination Runtime (CCR) http://channel9.msdn.com/wiki/default.aspx/Channel9.ConcurrencyRuntime

 [3] Xiaohong Qiu, Geoffrey Fox, George Chrysanthakopoulos, Henrik Frystyk Nielsen High Performance Multi-Paradigm Messaging Runtime on Multicore Systems Technical Report April 16 2007 http://grids.ucs.indiana.edu/ptliupages/publications/CCRApril16open.pdf

[4] Decentralized Software Services (DSS) http://msdn.microsoft.com/robotics/media/DSSP.pdf
[5] The Chemical Informatics and Cyberinfrastructure Collaboratory (CICC) at Indiana University http://www.chembiogrid.org
